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ABSTRACT

Troubleshooting in tactical data networks is often performed with a common toolset of
programs, such as ping, traceroute, and protocols such as Simple Network Management
Protocol. The assumption with such tools and protocols is that the logical configuration
of the network is correct; if it is not, these tools could fail or return inconclusive results.
While failure can be useful to prove a problem exists, it often does not provide enough
data to actually diagnose the issue. Protocols such as Link Layer Discovery Protocol ex-
ist to troubleshoot from the data-link layer, but these protocols cannot operate between
subnets. This limits their usefulness in tactical networks. An active networking project
known as XPLANE has been developed at the Naval Postgraduate School with these issues
in mind. XPLANE allows network operators to take active measurements in a network
without relying on the logical layer. This ability is extremely important in live tactical
networks, particularly when there is significant geographic separation between nodes. Be-
fore XPLANE can be used in tactical networks, important issues around security and the
XPLANE’s user interface must be resolved. This thesis explores the relevance of XPLANE
in tactical networks and develops a front-end to XPLANE for tactical network operators.
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Executive Summary

The author of this thesis deployed to Operation Enduring Freedom-Afghanistan in 2011-
2012 as the communications officer for 2nd Battalion 11th Marines (2/11). During his time
in Afghanistan, the author gained first-hand experience of managing and troubleshooting
a network geographically dispersed throughout a combat zone. Configuration issues at
remote sites affected network performance, which had impacts on 2/11’s ability to do its
mission. The majority of network issues were due to human error. These issues often
rendered the Internet Protocol (IP) layer of the network, often called the logical layer,
unreliable. The author quickly learned that common network troubleshooting tools such as
ping, traceroute, and Simple Network Management Protocol have limited utility in logically
broken networks. Basic troubleshooting became impossible, and Marines were often sent
to remote sites to physically troubleshoot the network, which wasted valuable time and
manpower.

The common suite of troubleshooting tools and protocols all suffer from the same weak-
ness. They rely on the very thing that is often the source of the problem: the network’s
logical configuration. When a network has logical routing loops, unreliable transmission
paths, and other anomalies, traditional tools become unreliable. Protocols such as Link
Layer Discovery Protocol that operate from the data-link layer are bounded to their local
subnet; they are unable to move between networks and are of limited use. An active net-
working system known as XPLANE has been developed at the Naval Postgraduate School
with these issues in mind.

XPLANE utilizes the concept of active networking. The goal of the active networking
paradigm is to increase capabilities in traditional networks by making them programmable.
XPLANE programs run inside frames in the network. This allows XPLANE programs to
discover and traverse network architecture to diagnose malfunctioning segments. XPLANE
lives at the data-link layer of the network, which allows it to function in networks that are
logically broken. It has unique capabilities that make it well suited for tactical networks.
First, XPLANE programs can relocate throughout the network via the data-link layer. Sec-
ond, programs are able to inject and capture packets in the network. When combined,
these capabilities allow for active measurements to be taken from anywhere in the net-
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work that has data-link layer connectivity. This feature could have a profound impact on
troubleshooting in geographically dispersed tactical networks.

The problem with XPLANE is one of accessibility to the common network operator. In its
current state, XPLANE consists of the runtime environment and a functional programming
language to create XPLANE applications. There is no user interface or mechanism for
tracking the results of multiple XPLANE programs. This thesis addresses these issues and
creates a practical troubleshooting toolset for tactical networks. First, a comprehensive set
of XPLANE applications known as the tactical edge suite has been developed. This suite
of applications can map network topology from scratch and diagnose common network
anomalies. Second, an XPLANE server has been developed that is responsible for launch-
ing XPLANE applications on the network and interpreting their results. The XPLANE
server additionally keeps state of the network as discovered by the tactical edge suite. Fi-
nally, a web-based user interface (UI) for the XPLANE server has been developed. The
web-based UI gives network operators a visual representation of the network and highlights
any detected anomalies.

To test the XPLANE-based toolset, a small test network was created. This test network con-
sisted of four routers running the XPLANE software and six client computers which did not
run XPLANE. A number of anomalies were introduced into the network: duplicate and in-
correct IP addresses were used, subnet addresses were entered incorrectly into routers, and
logical routing loops were introduced. Network discovery and follow-on troubleshooting
was first attempted with common troubleshooting tools discussed earlier. Attempts were
then made to diagnose the same problems using the XPLANE-based toolset, and the results
from both were compared. The XPLANE-based toolset outperformed traditional tools for
both network discovery and identifying anomalies.

While this thesis addresses some of the issues that need attention before XPLANE becomes
a practical tool, there remain ways it can still be improved. Some of them are discussed.
They include security, improved packet injection, a more powerful user interface and a
richer tactical edge suite of applications.
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CHAPTER 1:
Introduction

In late 2011, the author of this thesis deployed to Operation Enduring Freedom (OEF) as
the communications officer for 2nd Battalion 11th Marines (2/11). As the only artillery
battalion in Helmand Province, 2/11’s mission was to provide supporting fires to any unit
in the area of operations, which stretched from the Kajaki Dam to the Helmand/Pakistan
border. In order to cover such a large area, 2/11 was segmented into small, platoon-sized el-
ements that were geographically dispersed throughout Helmand Province to provide max-
imum coverage. As a consequence of this dispersion, 2/11 became extremely reliant on
Helmand’s Secret Internet Protocol Router Network (SIPRnet) in order to receive and pro-
cess calls for fire. Most units were well out of radio range from the artillery position that
supported them, and the protocols to have fire missions approved by higher headquarters
often required the use of SIPRnet for coordination.

By the midpoint of his deployment, the author had hit a wall. Nearly every artillery po-
sition in Helmand Province was having serious SIPRnet connectivity issues, which was
causing delays in fire missions. Delays in fire missions meant that Marines in a firefight
on the ground would have to sit there and wait for the support they requested, which was
dangerous and unacceptable. The problem became so bad that meetings were occurring on
a day-to-day basis between the 2/11 Communications section and the Division G-6, which
was the agency responsible for the entire Helmand network. The conclusion of most trou-
bleshooting sessions was the same; the problem was often too difficult to diagnose and fix
from the central hub of the network, Camp Leatherneck, and someone would have to travel
to different forward operating bases (FOBs) and physically troubleshoot the issue. By the
end of the deployment, the author and his Marines had travelled to five different FOBs
throughout Helmand Province to physically troubleshoot issues. These issues almost al-
ways ended up being caused by human error. Other units to include the Division G-6 and
the regimental combat team (RCT) 8 and RCT 6 Communications Section also travelled to
artillery firing positions to troubleshoot the network throughout 2/11’s deployment.

Sending Marines to fix network issues was not a trivial decision. The threat of improvised
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explosive devices (IEDs) prevented most personnel from travelling via a ground convoy,
especially for long distances. This made aircraft the primary mode of personnel transporta-
tion across Afghanistan. Unfortunately, travelling by aircraft was also risky, and at best
would take two to four days for a round trip flight, depending on weather. All of these
issues caused the author to re-evaluate the situation. How did it get this bad? How did
sending Marines become the fix to every network issue we experience? The answer was
simple: the network was too dispersed and too complex for the tools available at the time.
The Helmand communications network had become a mesh of interconnected FOBs span-
ning across hundreds of kilometers. The redundant architecture, while tactically sound,
made equipment configurations nearly impossible to troubleshoot from a central location.
Simple tools like ping and traceroute were unable to help, mostly due to the fact that such
tools rely on the very thing that needs to be fixed: the network configuration. More com-
plex tools such as Solar Winds were in use, but unfortunately could only offer a picture of
what they could see from the central hub of the network, Camp Leatherneck, which added
no value. The last bastion of hope, the documentation for the entire Helmand Province net-
work, was only accurate up to late 2011. What the Marines of Helmand Province needed
were tools that would allow them to ask deeper questions about the network. They needed
tools that could utilize the network segments that were working correctly, such as the link-
layer of the various transmissions systems, to gain insight into the malfunctioning upper
layers. Such tools could have prevented the need to send additional Marines into harm’s
way, simply to troubleshoot network segments that were physically out of reach.

1.1 Overview and Problem Statement
Network troubleshooting is often performed with a suite of commonly available tools such
as ping, traceroute, and Simple Network Management Protocol (SNMP). These tools can
be used to perform common tests such as connectivity between nodes, path discovery be-
tween nodes, and in the case of SNMP, statistics and detailed information on node con-
figurations can be queried from a distance. The assumption with all such tools is that the
logical configuration of the network is correct. If it is not, tests performed with these tools
will likely fail. While failure can be useful to prove a problem exists, it often does not
provide enough data to figure out why the problem exists in the first place.

The common weakness in these tools lies at the heart of the original assumption made:
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how can tools that rely on the logical layer diagnose issues with the logical layer itself?
The obvious answer is they often cannot. In order to troubleshoot issues in the logical
layer, one has to move “back down” the layers of the network. In the case of the open
systems interconnection (OSI) model, this means having tools that work at layer two, often
called the data link layer. At the data link layer, there are a number of protocols that
aid in network discovery such as the Address Resolution Protocol (ARP) [1], Link Layer
Discovery Protocol (LLDP) [2], and Microsoft’s Link Layer Topology Discovery (LLTD)
[3]. There are also tools such as linkloop which replicate the behavior of the ping utility
[4]. Unfortunately, all of the aforementioned tools and protocols only aid in one aspect
of network troubleshooting: discovery. Additionally, such tests are limited to the local
broadcast domain, which means a node can only discover what it is directly connected
to. This is a limitation of operating at the data link layer; the network is organized into
non-routable segments that are unable to communicate without relying on layer three, the
logical layer.

1.2 Research Questions
The need for tools that operate at the data link layer, yet are able to traverse networks
beyond the local broadcast domain is apparent. Such tools could take advantage of physical
connections that still exist between nodes to troubleshoot logical layer issues. What would
the requirements of such a tool be? With no routing information inherently available at
the data link layer, packets would have to somehow be able to make decisions about their
path as they traverse the network. In other words, packets would need to be active instead
of a collection of passive data. This concept, known as active networking, is not a new
one [5]. The software defined networking (SDN) paradigm, which has gained popularity
in recent years, has its roots in the idea of programmable networks [6]. By extending
the functionality of traditional networks through active networking, new systems can be
developed to manage, troubleshoot, and even reconfigure a running network in ways not
possible today.

One such system, known as XPLANE, is currently in development at the Naval Postgrad-
uate School (NPS) [7]. Once enabled on a network, XPLANE allows for small programs
to be run on the network itself. XPLANE programs have two key capabilities: the abil-
ity to crawl through the network via the data link layer, as well as the ability to inject
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and capture packets in the network [7]. Used together, these capabilities allow for active
measurements to be performed from any point in the network that has link-layer connec-
tivity. When considered in the context of tactical data networks, capabilities such as these
have the potential to change the way network troubleshooting is performed. This thesis
will explore the following question: how can active networking systems such as XPLANE
improve troubleshooting in malfunctioning or damaged tactical data networks?

The XPLANE has been demonstrated in laboratory settings, however work remains to make
it a practical tool for troubleshooting tactical networks. First, a set of XPLANE applica-
tions that would aid in troubleshooting common issues in tactical networks needs to be
identified and developed. Second, an interface needs to be developed for launching these
applications and capturing the results. XPLANE applications run asynchronously on the
network; results of any measurements taken are returned back to the node that initiated the
program and then forgotten. It is up to the user to keep state and interpret results in a mean-
ingful way. In order to provide accessibility to the XPLANE results, a visual user interface
needs to be developed. Finally, introducing new software such as XPLANE into a network
presents security risks. What are the security risks, and how will they be mitigated?

To address these issues, a comprehensive set of XPLANE applications known as the tacti-

cal edge suite has been developed to map the topology of a network and diagnose common
network anomalies. These applications are managed and launched via a XPLANE server

that is responsible for capturing and interpreting results of programs ran on the network.
The XPLANE server is also responsible for keeping state of the network, which can be
visualized via a web-based user interface (UI) to the server. The XPLANE web-based
interface displays the state of the network as a graph of interconnected nodes. The inter-
face will also highlight any anomalies detected in the network. Security concerns with
XPLANE have been identified, and access control mechanisms have been incorporated to
ensure that only authorized users are allowed to execute code on the network. Additionally,
the topic of key management has been explored and a model for access control has been
developed.
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1.3 Scope of Research
The research conducted in this thesis will be limited to detection and diagnosis of issues
in tactical data networks; no attempt will be made to remotely fix issues diagnosed with
XPLANE. Changing the configuration of live network devices presents its own set of chal-
lenges that include dealing with multiple proprietary interfaces and access control mecha-
nisms [6]. Additionally, XPLANE is limited to observing network behavior by design and
therefore is not capable of modifying network behavior. Possible extensions to this thesis
and the results provided will be discussed in Chapter 7 under future work.

1.4 Thesis Organization
Chapter 2 begins with an overview of the OSI model and basic networking concepts. Com-
mon issues in tactical data networks are presented, and the traditional tools and protocols
used in network troubleshooting are explained, with emphasis on their shortfalls in tacti-
cal environments. Recent advances in network management systems is presented, and the
concept of active networking is explained. XPLANE, an active networking system, is intro-
duced. Active networking research projects that inspired XPLANE’s design are addressed,
and their limitations in tactical environments are discussed.

Chapter 3 presents XPLANE and XPLANE Programming Language (XPL). An overview
of XPLANE and XPL’s capabilities and limitations is given. The mechanics of XPLANE
at the data-link layer of the network is explained. Programming in XPL is addressed, and
code examples are given to demonstrate XPL constructs to the reader.

Chapter 4 presents the tactical edge suite for troubleshooting tactical networks. The design
philosophy for the suite is presented, along with the testing methodology and platforms
used. For each application developed, the rationale behind developing it is explained, as
well as a general description of the algorithm, any assumptions made, and additional con-
cerns.

Chapter 5 presents the design of an XPLANE server, and the design of the web-based UI.
The composition of the server and its integration with the tactical edge suite is presented.
The web-based UI and its interface to the XPLANE server is described.

Chapter 6 presents the results of an assessment made of the utility of the XPLANE server
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and the tactical edge suite. The XPLANE server and tactical edge suite are compared with
traditional network tools for troubleshooting networks. The results of this comparison are
given.

Chapter 7 provides some conclusions and addresses future work of both XPLANE itself as
well as the work presented in this thesis.

Appendix A contains all code listings referenced in this thesis.

Appendix B contains the detailed configuration for the network used in Chapter 6.
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CHAPTER 2:
Background and Related Work

Computer networks have greatly evolved over the past few decades. The amount of devices
on networks, as well as the functionality of each device, has increased over time [6]. Tradi-
tionally, networks have been configured "by hand," (i.e., manually configured). As of this
writing, this is the standard method of network configuration in the United States Marine
Corps (USMC). Routers, switches, firewalls, and combination devices must be configured
in a logical manner that allows for proper operation of all devices on the network [6]. As the
amount of devices on a network increases, manually managing all devices and their con-
figurations from a central point becomes difficult. In the case of geographically-dispersed
networks in an active combat zone, the idea is untenable. In order to address the issues
of managing complex networks, one has to understand why traditional tools and protocols
have hit the limits of their capabilities, as well as previous and current work related to these
issues.

2.1 OSI Model
The OSI model is a concept used to describe the various layers of computer networks and
how the layers relate to each other [1]. The model breaks networks down in to seven distinct
layers: physical, data link, network, transport, session, presentation, and application [1].
Layers are typically numbered from one to seven starting from the physical layer, and each
layer is defined by the function it performs in the network [8]. This thesis will focus on the
data link layer (layer two) and the network layer (layer three).

2.1.1 Data Link Layer
The function of the data link layer is to provide error-free transmission between adjacent
nodes over the physical layer [8]. Individual data packets are referred to as frames at this
layer [1]. Many different link layer protocols exist; common examples are Point-to-Point
Protocol (PPP), Fiber Distributed Data Interface (FDDI), and the Institute of Electrical and
Electronics Engineers (IEEE) 802.3 standard, more commonly referred to as Ethernet. Eth-
ernet is the most common link layer protocol in use today [1]. As a service, Ethernet offers
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flow control, error detection, and error correction on data transmitted between adjacent
nodes [1]. This thesis will focus on using Ethernet as the link layer protocol.

2.1.2 Network Layer
Transmission of data at the link layer is limited to adjacent nodes. In order to route packets
between networks, the link layer forwards the contents of frames to the network layer. This
layer is also commonly referred to as the logical layer. The function of the network layer is
to provide end-to-end delivery of data between nodes of different networks [1]. The most
common network layer protocol is the IP. IP provides end-to-end delivery of datagrams,
i.e. packets, via best effort delivery [1]. This thesis will focus on using IP (version 4) as
the network layer protocol.

2.2 Network Issues that Require Troubleshooting
The logical layer of the network, in particular IP, is necessary to create larger networks
from subnetworks [1]. The ability to route packets from one network to another is what
makes networks such as the Internet possible. In order to route packets efficiently, IP
relies on routing algorithms to calculate paths on its behalf [1]. Routing algorithms in turn
rely on a set of assumptions about the network and how it is configured. One important
assumption is that each node in the network has a unique IP address, which identifies it
within the network. Another assumption is that the routers themselves have been correctly
configured. When these assumptions are proved false, errors will begin to occur in the
network. This thesis will refer to network errors as anomalies.

2.2.1 IP Address Anomalies
IP addresses are used to uniquely identify nodes within a network. When two or more nodes
use the same IP address, this is referred to as duplicate IP addresses within the network.
Duplicate IP addresses present a problem to network devices; how will a decision be made
on where to forward data when there are multiple nodes using the same IP address? The
behavior of network devices in this situation will depend on many factors, such as ARP
table caches.

Along with IP addresses comes the notion of subnets and subnet masks, which are used
to segment networks into distinct sub-networks [1]. Subnet masks have to be correctly
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configured on nodes and routers, or else routing algorithms will be unable to make a deter-
mination on which subnetwork a given IP address lives. Subnet masks can be accidentally
misconfigured on routers, end hosts, or both. The effect on the network will depend on
many factors, making misconfigured subnet masks difficult to remotely diagnose and trou-
bleshoot.

2.2.2 Packet Loss
IP is a best effort service, and therefore makes no guarantees that packets will be delivered
to their destination [1]. For reliable end-to-end transmission, protocols such as the Trans-
mission Control Protocol (TCP) are implemented at layer four of the network stack, the
transport layer [1]. Packet loss can occur in a network for a variety of reasons; examples
include transmission errors, routing loops, firewalls, access control list (ACL) restrictions,
and queueing delays in routers. While it is easy to detect packet loss, it is often hard to
single out the source of the error.

2.2.3 Routing Loops
Routing loops occur in networks when packets are unable to leave an infinitely looping path
in the network [9]. Figure 2.1 shows an example of a routing loop that has been formed
between three routers in a network. Routing loops can occur for many different reasons;
examples include incorrectly configured static routes, delays in network convergence, and
general router misconfiguration [9]. As a network anomaly, routing loops have unique side
effects depending on the network topology and configuration, and are therefore hard to
detect in many networks [9].

2.3 Traditional Tools for Troubleshooting
Over time, network administrators have come to rely on a common suite of tools and pro-
tocols to troubleshoot networks. These tools are usually available on all end-user operating
systems as well as network devices such as routers. This section will discuss the more
common tools and protocols to address the shortfalls of each one. This section is not a
comprehensive list of every troubleshooting tool in existence; there are simply too many.
Most if not all are similar enough in function to the tools and protocols that are addressed,
and suffer from the same weaknesses.
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Figure 2.1: An example of a routing loop between three nodes.

2.3.1 Ping
The ping utility is a common troubleshooting tool that uses the Internet Control Message
Protocol (ICMP) to test end-to-end connectivity between nodes. It typically comes in the
form of a command-line tool, however the basic ICMP echo request/response mechanism
is often referred to as "pinging a host", regardless of the way the message was sent. A
successful ping implies end-to-end connectivity between two nodes on a network. A failed
ping does not necessarily imply a lack of connectivity between two nodes; it simply in-
dicates there could be an issue. Host-based firewalls, network firewalls, ACL restrictions,
and other factors could all cause ping to fail, even if there is a logical path between the two
nodes in question. This limits ping’s utility in troubleshooting environments.

2.3.2 Traceroute
The traceroute utility is another command-line troubleshooting tool. Traceroute makes use
of the time to live (TTL) field of IP datagrams to trace the route taken to a given destination
[1]. A traceroute analysis of the path between two nodes will yield a list of hops along
the path, the round-trip delay to each hop, and the hostnames and/or IP addresses of each
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node along the path [1]. Just like ping, traceroute utilizes ICMP to send messages. There
are versions that can alternatively use TCP for networks that restrict ICMP messages. The
information provided by traceroute can be very useful in certain troubleshooting situations.
When the logical layer of the network is malfunctioning, the utility of traceroute can vary
widely.

2.3.3 SNMP
SNMP is a network management protocol used to manage devices and query information
from them over a network [1]. SNMP organizes information into objects known as manage-
ment information bases (MIBs). MIBs are used to organize information in a hierarchical
fashion with a well-defined structure that is standard across all devices. In turn, MIBs can
be viewed as a database of configuration parameters and statistics that can be reached from
other nodes in the network [1]. There are standard MIBs for information such as device
configuration, protocol statistics, and routing tables and configurations.

In comparison to command-line utilities such as ping and traceroute, SNMP is an actual
management protocol with much more capability. SNMP has far more utility in certain
troubleshooting situations than ping and traceroute, but unfortunately suffers from the same
weaknesses. SNMP is a network layer (layer three) protocol, and its capability in a mal-
functioning network varies widely.

2.3.4 LLDP, LLTD, and CDP
The IEEE LLDP, Microsoft’s LLTD, and Cisco’s Cisco Discovery Protocol (CDP) are link
layer protocols used by nodes to advertise information to the rest of the local area network
[2, 3, 10]. This information can include information such as a node’s identity, neighbors,
and services available [2, 3, 10]. The three protocols are similar enough in functionality
to address their capabilities and limitations as a group. While LLDP, CDP, and LLTD are
useful as link layer discovery tools, they are by definition limited to the local broadcast
domain and therefore unable to help in discovering nodes across network boundaries.

2.4 Recent Advances in Network Troubleshooting
In addition to the tools and protocols mentioned, there are a number of successful academic
projects that have created new and more powerful network management and troubleshoot-
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ing capabilities.

2.4.1 Sophia
Sophia is a project aimed at developing a network information plane to collect, store, prop-
agate, and react to observations about the network in a distributed manner [11]. Sophia
is a good example of the overlay network concept, which is a networked system of nodes
within the larger network. Sophia creates an overlay network of distributed sensors that
provide information to a declarative programming environment that evaluates logic state-
ments about the network [11]. Sophia is novel in the fact that administrators can query the
network directly for management information in a declarative manner [11]. In other words,
administrators can ask deep questions about network state, without telling the network how

to find the answer to the query. While Sophia shares similar goals with XPLANE, it relies
on the assumption that the logical layer of the network is functioning correctly, limiting its
usefulness in malfunctioning networks.

2.4.2 NetQuery
NetQuery is a project from Cornell University aimed at implementing a knowledge plane on
large-scale networks such as the Internet [12]. Similar to Sophia, NetQuery aims to dissem-
inate information about network entities to support application-level reasoning. NetQuery
focuses on trusted computing, information attribution, and how to reason about the network
with limited trusted information [12]. NetQuery, like Sophia, makes assumptions on the
correctness of the logical layer of the network, limiting its usefulness in malfunctioning
networks.

2.5 Active Networking
The term active networking refers to a new networking paradigm developed in the 1990s
[5]. The goal of this paradigm was to generate innovation in the design and control of net-
works by making them programmable [6]. By making networks programmable, followers
of the active networking paradigm were looking for novel ways to create new capabilities
and services. Traditional computer networks are not programmable in the classic sense;
devices are individually configured, and there is no environment on the network for code
to be executed within [6]. Active networking changes this by presenting two candidate net-
work programming models; this thesis will focus on the capsule model [6]. In the capsule
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model, packets are a combination of code and data known as capsules [5]. The code in these
capsules can be executed at any node in the network and can modify network behavior [5].

This radical approach to opening up network capabilities may have been ahead of its time;
active networking never experienced widespread adoption beyond the research commu-
nity [6]. A possible reason for this was the lack of a clear demand for such capabilities at
the time [6]. This is no longer the case. In many ways, the active networking community
was attempting to address issues now being addressed by SDN [6]. While there are simi-
larities between SDN and active networking, SDN is primarily concerned with the idea of
separating the control plane of a network from the data plane in order to dynamically adjust
the control plane based on network conditions [6]. In other words, SDN intends to make
networks more dynamic by standardizing the control of network devices such as routers
and switches from a central location. Active networking in the capsule model focuses on
manipulation from the data plane instead; this means that it is the responsibility of the cap-
sules, not the routers, to dynamically adjust to network conditions [6]. The importance of
this distinction in tactical networks will be explained further in Chapter 3. SDN and the
centralization of the control plane will likely have a role in future tactical networks, but it
will not be a focus of this thesis.

The active networking paradigm has manifested itself through a number of academic
projects [6]. XPLANE is only one of them. In order to understand why XPLANE is a
better fit for tactical networks than the others, we need to address prior and related work.

2.5.1 PLAN
Programming Language for Active Networks (PLAN) is an active networking project de-
veloped at the University of Pennsylvania in the late 1990s. The goal of PLAN was to
develop a functional programming interface to the concept of active networking [13]. The
developers of PLAN envisioned using it as a network-level ’glue’ language for services
written in other general-purpose languages [13]. Diagnostic programs such as ping and
traceroute can be emulated in PLAN with minimal effort, and more importantly, without
relying in ICMP. This kind of flexibility demonstrates the ability to replace the functional-
ity of certain protocols with simple programming interfaces [13]. The design of XPLANE
was partially inspired by PLAN, but the two platforms differ in an important aspect; PLAN
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lives at the network layer, while XPLANE lives at the data link layer [7, 13]. Addition-
ally, PLAN is not focused on network troubleshooting, and lacks features such as packet
injection to take active network measurements. The PLAN project is no longer maintained.

2.5.2 Sprocket
The Sprocket programming language is a component of the Smart Packets architecture, an
active networking project focused on network monitoring and management [14]. Similar
to PLAN and XPLANE, Smart Packets are active network programs that execute on nodes
as they traverse the network [14]. Sprocket, a programming language based on the syntax
of C, serves as the high-level language that Smart Packets are written in [14]. The de-
sign of XPLANE and the XPL is influenced by Smart Packets and Sprocket [7]. As with
PLAN, Smart Packets operates at the network layer and therefore has limited use in the
types of networks this thesis intends to explore. Smart Packets is not focused on network
troubleshooting, as is the case with PLAN, and similarly lacks active network measurement
capability.

The Active Networking research efforts discussed so far have a common weakness: they
are either unable to function in logically broken networks, or were not specifically designed
to troubleshoot networks. Both of these shortfalls limit the usefulness of such systems in
tactical environments. An active networking system known as XPLANE has been devel-
oped with these issues in mind. The next chapter will introduce XPLANE and give an
overview, with code examples, of XPLANE’s capabilities.
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CHAPTER 3:
XPLANE

XPLANE is an active networking system developed at NPS. The goal of XPLANE is to
develop a system that can perform active measurements for troubleshooting in a network
relying solely on physical connectivity [7]. In other words, XPLANE aims to function cor-
rectly even if the networking is logically broken. This feature, along with programmable
packet injection, make XPLANE suitable for troubleshooting and separate it from other
active networking efforts. This thesis will focus on using XPLANE to diagnose anoma-
lies in networks, and compare the utility of information provided by XPLANE against the
common troubleshooting tools and protocols mentioned earlier.

3.1 Overview
XPLANE can be considered an overlay network that exists just above the data link layer [7].
The system consists of a shim that operates at the data link layer of network devices, and a
programming language, XPL, that is used to create programs that will run on the XPLANE.
The shim provides the runtime environment for XPLANE programs. When an XPLANE
packet is received on an XPL-enabled node, the shim decodes the packet and executes the
XPL code inside. Figure 3.1 shows the format of an XPLANE packet. The current version
of XPLANE does not utilize the Sender ID, Sequence Number, or Fragmentation fields. It
is important to note that the marshaled code inside the packet might be the continuation of
an ongoing computation in the network. XPL programs can relocate themselves throughout
the network during the execution of a program as they need [7].

Figure 3.1: XPLANE packet format
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XPLANE does not rely on the logical layer for transportation through a network. It instead
relies on link layer broadcasts between nodes. This allows XPL programs to move through
networks that are logically broken even when normal IP traffic cannot. If an executing
program chooses to relocate, the XPLANE shim will generate an XPLANE packet with
the execution’s current state stored in it, and broadcast the frame on the data link layer to
all adjacent nodes. XPLANE uses the notion of XPLANE node IDs, which are unique
node identifiers throughout the XPLANE. Nodes identify themselves as recipients of an
XPLANE packet based on the node ID of the receiver. Packets can be addressed to specific
node IDs. Packets can additionally be addressed to all adjacent nodes. XPLANE refers
to this as flooding. XPLANE programs aim to fit in a single Ethernet frame, which has a
maximum size of 1500 bytes. XPLANE will remember neighboring XPLANE nodes once
they are discovered. The XPLANE shim can also be configured to beacon its presence
on the local subnet to all other XPL-enabled nodes. Beaconing helps in discovering di-
rectly connected neighbors, increasing the utility of XPL programs that rely on neighbor
information.

3.2 XPL
XPL is a subset of the TinyScheme functional programming language. It has built-in con-
structs to perform functions and access node information specifically related to XPLANE.
Table 3.1 gives a summary of common XPL-Scheme functions, their pseudocode syntax
for this thesis, and a description of functionality. The first feature of XPL to explore is the
ability to relocate to a different node. This can be accomplished in two different ways with
XPLANE. The first way is the On function, which has the syntax:

On(e1, e2)

where e1 is an expression that evaluates to the node ID of a directly connected neighbor,
and e2 is the expression to evaluate on that neighbor. The expression evaluated on the
neighboring node can be any legal expression, including more calls of the On function:

On(1, On(2, (On 3, (2 + 2))))
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This program would relocate to the XPLANE node with node 1, then relocate to node 2,
then relocate to node 3, and finally evaluate the expression 2+2 on node 3. Figure 3.2
shows how the computation would take place on a network assuming the nodes are directly
connected.

XPL-Scheme Pseudocode Description
(on n e) On(n,e) Relocate to node n and evaluate expression e
(onflood e) OnFlood(e) Relocate to all directly-connected neighbors

and evaluate expression e
node Node() Returns node ID for current node
(node.ifaces) Node.i f aces() Returns list of network interfaces for current

node
(node.ip i) Node.ip(i) Returns IP address for interface i on current

node
(node.mask i) Node.mask(i) Returns subnet mask for interface i on current

node
(node.ethaddr i) Node.ethaddr(i) Returns MAC address for interface i on current

node
(node.direct i) Node.direct(i) Returns list of known neighbors on interface i

of current node
(send e1 e2 e3) Send(e1,e2; e3) e1 evaluates to device to send on, e2 evaluates

to list specifying protocol and destination, and
e3 represents a body of code to be evaluated

(pcap e1 e2 e3 e4) Pcap(e1,e2,e3,e4) e1 evaluates to device to listen on, e2 evaluates
to protocol, e3 evaluates to timeout value for lis-
tener, e4 evaluates to packet processing function

(list ...) List() Returns arguments to function as a list
(car l) Head(l) Returns the first element of the list l
(cdr l) Tail(l) Returns all but the head of the list l
(append l ...) AppendToList(l, ...) Appends all supplied arguments after list l to l
(member s l) Member(s, l) Returns true if element s is a member of list l.

Returns false otherwise

Table 3.1: XPL-Scheme and Pseudocode syntax for XPLANE functions

A more useful example of code relocation is to retrieve information about a node on the
network:

On(1, On(2, On(3, (Node.ip(ai)))))
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Figure 3.2: Visualization of relocation across multiple nodes in XPL

This program will traverse the network in a similar fashion, evaluating the expression
Node.ip(ai) on node 3. Node.ip() is a function in XPL that takes a network interface as
an argument and returns the IP address of that interface. ai is a variable in XPLANE
representing the network interface that the XPLANE packet arrived on. The result of the
expression Node.ip(ai) would then be the IP address of the interface the program arrived on.
Unfortunately, the result of this computation would stay on node 3. A more useful program
would somehow return the result of the program to the node of origin. This is accomplished
in XPLANE through the use of continuation passing style (CPS) transformations.

3.2.1 Continuation Passing Style
CPS is a programming technique in computer science in which each function or procedure
that is called is passed a continuation. This continuation represents the remaining work of
the computation to be performed, and is executed at the end of function instead of returning
to the caller. This allows a program to continue execution without ever having to return to
the point from which it was called [15]. XPLANE utilizes CPS to accumulate a continu-
ation that will return the result of a computation back to the originating node. When the
result of a program is generated, the continuation is called, carrying the result back to the
originating node along the reverse path taken to the final node.

In addition to the On function, XPL has a function, OnFlood, which has the syntax:
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OnFlood(e1)

where e1 is any valid expression. OnFlood will evaluate the expression e1 on all directly
connected neighbors, hence the name. Consider the following program:

OnFlood(Node.ip(ai))

This program would flood to all directly connected neighbors which would in turn evaluate
Node.ip(ai) and return the IP address of the arrival interface. If this code were compiled
with the CPS transformation, the IP address of every directly connected neighbor would
be returned to the origin. Figure 3.3 shows how the computation would take place on a
network assuming the originating node has three directly connected neighbors.

Figure 3.3: Visualization of program utilizing OnFlood compiled with CPS transformation

It is interesting to explore the mechanics of the above OnFlood program. By calling On-

Flood, the current state of execution was suspended, encapsulated into an XPLANE packet,
and broadcasted on the network. In effect, this made n copies of the original program,
where n is the number of directly connected neighbors that are XPL-enabled. When used

19



in a recursive function, it is possible to utilize OnFlood to reach every XPL-enabled node
in a network non-deterministically, assuming there is a subgraph connecting all such nodes.
This is a powerful feature of XPL. Programs need not have any prior knowledge of network
topology, and can make very few assumptions about it. A good example of a use-case for
this feature would be locating an XPL node on the network without any prior knowledge
of its location. Such a program would follow the general algorithm:

Algorithm 1 Algorithm to locate a node in the XPLANE

1: procedure FINDNODE(n, path) . n=target node, path=list of nodes visited so far
2: currentNode← Node()

3: if currentNode = n then
4: return path . path contains all nodes from source to destination
5: else if Member(currentNode, path) = f alse then
6: path← AppendToList(path,currentNode) . Append the current node to path
7: OnFlood(FindNode(n, path))

8: end if
9: end procedure

In this algorithm, the Member() function returns true if the first argument is a member of
the second argument, and the AppendToList() function appends the first argument to the list
provided as the second argument. An XPL implementation of this algorithm can be found
as Listing 1 of Appendix A. The FindNode() procedure will return the path taken to the
destination node if a path is found. It is worth noting that all paths to the destination node
will be found due to the use of OnFlood, and therefore the originating node may receive
multiple results.

3.2.2 Packet Injection and Capture
The second major feature of XPL is packet capture and injection. The XPL functions Send

and Pcap are used to send and capture packets, respectively. The two are often used in
conjunction to perform some kind of active measurement within the network. The syntax
of Send is as follows:

Send(iface, pktdesc; body)
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where iface is a network interface, pktdesc is a packet descriptor and body is the XPL pro-
gram within scope of the sent packet. The packet descriptor is used to specify parameters of
the packet to inject such as protocol and destination host. The body will be called after the
packet is injected. This is typically used to schedule packet capture via the Pcap function.
Pcap has the syntax:

Pcap(iface, filter, timeout, pktfunc)

where iface is a network interface, filter is a tcpdump-style filter, timeout is a timeout value,
and pktfunc is a packet-processing function. The filter will instruct Pcap to only capture
packets that match the supplied filter. The timeout value specifies the number of seconds to
capture on the supplied interface. The packet-processing function is responsible for parsing
captured packets and making sense of any captured traffic.

For example, Algorithm 2 demonstrates a ping-like program using Send and Pcap.

Algorithm 2 Send a ping and look for reply

1: procedure P(pkts) . pkts=list of packets to process
2: if pkts = null then
3: return f alse . reply packet was not found
4: else
5: pkt← Head(pkts) . grab the first packet from the list
6: if IP.src(pkt) = ”10.0.0.1” then
7: return true . reply packet was found
8: else
9: P(Tail(pkts)) . continue processing remaining packets

10: end if
11: end if
12: end procedure
13: protoAndDest← List(”EchoRequest”,”10.0.0.1”)
14: Send(1, protoAndDest; Pcap(1,”icmp”,3,P))
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The program attempts to ping the IP address 10.0.0.1 and looks for a reply. The program
begins by calling Send to generate and inject an "EchoRequest" packet to the IP address
10.0.0.1 on the supplied interface, which in this case is interface 1. After the packet is
injected, Send evaluates the supplied body which calls Pcap. Pcap schedules packet capture
on the supplied interface (again interface 1) and filters for ICMP packets. Pcap will attempt
to capture packets for three seconds before terminating. Any captured packets will be
handled by the specified packet-processing function P. P takes a list of captured packets
and looks for replies from 10.0.0.1, returning true if one is found and false otherwise.
Listing 2 of Appendix A gives the XPL code for this algorithm.

By combining packet capture and injection with relocation, packets can be inserted into the
network at one node, and captured at a different node. This kind of flexibility allows for
flexible real time measurements in a network.
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CHAPTER 4:
Developing the Tactical Edge Suite of Applications

This chapter will begin to explain the rationale behind the design and development of a
new troubleshooting toolset. The core of this toolset will consist of a library of XPLANE
applications that specifically target tactical networks. This library of applications will be
referred to as the tactical edge suite. Once developed, the tactical edge suite will be used
to actively map and diagnose issues in tactical networks. This chapter will discuss the
design philosophy of edge suite applications, as well as the testing methodology and testing
platforms used. Individual applications will be presented and their use in tactical data
networks will be explained.

4.1 Design Philosophy of Application Suite
Individually, each application is designed to serve a very specific purpose, such as finding
nodes or discovering paths. Limiting application scope keeps the overall size of the appli-
cation small and performance predictable. By combining or even chaining the output of
multiple applications together, network operators can incrementally build on information
discovered about network state, eventually reaching a live view of the network. Such a
view of the network is quite different from the pre-programmed view in applications such
as Solar Winds, which are often a representation of what the network should look like. By
incrementally building a view of the actual network state, network operators should be able
to make more informed decisions during troubleshooting.

4.2 Assumptions Made for Testing Purposes
In order to allow for testing, assumptions on the breadth of the XPLANE in a network have
to be made. In other words, a decision always has to be made on which nodes in a network
will be XPL-enabled. In a perfect world, all nodes would be part of the XPLANE, as this
would allow for the most accurate view of the network from an XPLANE perspective. For
the purposes of this thesis, the assumption is that all network infrastructure is XPL-enabled
(i.e., routers and switches). In the author’s view, this is the most likely deployment strategy
for XPLANE in future tactical networks.
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With the design philosophy and assumptions in mind, the applications can be introduced.
For each application, a number of points will be addressed. First, the rationale behind
developing each application, and its relevance in tactical networks will be explained. Next,
the application’s general algorithm will be explained and presented. Sample use cases will
be given, and any notes on performance, behavior, and expected outputs will be given.
Finally, the XPL source code will be listed in Appendix A. It is important to note that
the source code listings are in uncompiled form; the code must be compiled by the CPS
transformation to be used correctly on the XPLANE.

4.3 Discover XPLANE Nodes Using OnFlood
This application utilizes the XPLANE OnFlood function to discover all XPL-enabled
nodes in the network. This application is designed to be a starting point for gathering
network information. By first discovering the XPL-enabled nodes on the network, network
operators can build on this information by next discovering links, IP addresses, and other
relevant troubleshooting information. The importance of having an accurate view of the
network topology in troubleshooting situations cannot be overstated; without an accurate
view of the network, network operators are left at a severe disadvantage.

4.3.1 Algorithm Description
The application starts by making an initial call to a recursive function. This function checks
the local XPLANE node ID against a list of already visited nodes. If the node ID is not
found in the list, it will add the local node ID and flood to all directly connected neighbors.
The terminating condition for the application is returning to a node already visited. When
this happens, the list of discovered nodes is returned to the originating node. This list
not only contains discovered nodes, but also discovered adjacencies between nodes, as
the nodes are added in the order they were traversed. The general algorithm is shown as
Algorithm 3.

4.3.2 Assumptions
The application assumes there is an XPL-enabled device within the local broadcast domain,
which follows from the originally stated assumptions for testing.
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Algorithm 3 Discover XPLANE nodes using OnFlood
1: procedure DISCOVERNODES(path) . path=list of nodes visited so far
2: currentNode← Node()
3: if Member(currentNode, path) = true then
4: return path . path contains all nodes visited
5: else
6: path← AppendToList(path,currentNode) . Append the current node to path
7: OnFlood(DiscoverNodes(path))
8: end if
9: end procedure

4.3.3 Additional Notes
The application returns a list to the originating node, with the order of discovered nodes
starting from left to right. The use of OnFlood will create multiple copies of the applica-
tion, which will in turn generate many duplicate results at the originating node. In large
networks, the number of copies of the application can grow quite large, and may affect
network performance. In other words, this strategy of node discovery is noisy. A good
use-case for this particular strategy would be a network with unreliable transmission paths.
By making multiple copies of the application, the likelihood of receiving path information
at the origin increases. For example, for just a single path of length k there will k-1 attempts
to report the first hop of the path, k-2 attempts to report the first two hops, and so on.

4.4 Discover XPLANE Nodes Using Depth First Search
This application utilizes a depth-first search (DFS) approach to discover all XPL-enabled
nodes in the network. Just as with discovery via flooding, this application is designed to
be a starting point for gathering information on network topology, that, unlike Algorithm
2, generates less traffic. However, it does not produce path information like Algorithm 2
does.

4.4.1 Algorithm Description
This application starts by creating a list of interfaces on the current node. For each inter-
face, it enumerates all directly connected neighbors via XPLANE’s Node.direct function.
For each neighbor, the application relocates and begins the same process again. All node
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identifiers discovered along the search are appended to a list, which is eventually returned
to the originating node. The general algorithm is shown as Algorithm 4.

Algorithm 4 Discover XPLANE nodes using depth-first search
1: procedure INTERFACES(lst,s)
2: if lst = null then
3: return s
4: else
5: directNeighbors← Node.direct(Head(lst))
6: Inter f aces(Tail(lst),Neighbors(directNeighbors,s))
7: end if
8: end procedure
9: procedure NEIGHBORS(lst,s)

10: if lst = null then
11: return s
12: else
13: Neighbors(Tail(lst),On(Head(lst),Visit(s)))
14: end if
15: end procedure
16: procedure VISIT(s)
17: if Member(Node(),s) = true then
18: return s
19: else
20: Inter f aces(Node.i f aces(),AppendToList(s,Node()))
21: end if
22: end procedure

4.4.2 Assumptions
The applications assumes that XPLANE beaconing is turned on, or that nodes have had
sufficient time to learn of neighbors through other means.

4.4.3 Additional Notes
The application returns a list of discovered node identifiers to the originating node. There is
no implied adjacency information in the returned list. This application uses the XPLANE
On function for relocation, and therefore does not create multiple copies of itself in the
network. This makes the DFS-based approach less noisy than the flooding approach. It
does however increase the chance of failure; if the XPLANE packet is dropped during any
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relocation at runtime, the entire computation will be lost. This method of discovery should
be avoided in highly unreliable networks. A good use-case for this application would be
node discovery in a stable network where a less-noisy discovery process is preferred.

4.5 Enumerate Information on a Remote Node
This application will traverse a known path to a remote node. The path may have been
discovered using Algorithm 3. Once at the destination node, the application will enumerate
the IP address, subnet mask, MAC address, and directly connected neighbors for each
interface. This information is then returned to the originating node as a nested list.

4.5.1 Algorithm Description
The application starts by taking a unidirectional path as input. It then begins relocating to
nodes in the path. At each relocation, the application checks to see if the current node ID
matches the destination node ID. If it does not, the application relocates to the next node in
the path. If it does match, the application calls a recursive function that enumerates infor-
mation on all node interfaces. Once complete, the information is returned to the originating
node. This application has two terminating conditions. The first occurs if the application
fails to reach the destination node ID by the specified path. The second occurs when the
applications runs out of interfaces to enumerate on the distant node. The general algorithm
is shown as Algorithm 5.

4.5.2 Assumptions
As with other protocols, a best effort attempt is given to reach the destination node. Recent
changes in network conditions and other factors can affect the outcome of the application.
The application will silently terminate if the destination node cannot be reached via the
provided path.

4.5.3 Additional Notes
The application returns a nested list to the originating node. A use-case for this application
would be to enumerate information on a node ID that is known to exist in the network, such
as after running a discovery application.
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Algorithm 5 Enumerate information on a remote node
1: procedure TRAVERSE(path) . path=list of nodes
2: if Head(path) = Node() then
3: EnumNodeIn f o(List(),Node.i f aces()) . List() = empty list
4: else
5: path← Tail(path) . Remove first element of path
6: On(Head(path),Traverse(path))
7: end if
8: end procedure
9: procedure ENUMNODEINFO(nodeIn f oList,devs). devs=interfaces to be enumerated

10: if devs = null then
11: return nodeIn f oList . nodeInfoList contains info on all interfaces
12: else
13: d← Head(devs) . d=current interface
14: devIn f o←List(d,Node.ip(d),Node.mask(d),Node.ethaddr(d),Node.direct(d))
15: AppendToList(nodeIn f oList,devIn f o)
16: EnumNodeIn f o(nodeIn f oList,Tail(devs))
17: end if
18: end procedure

4.6 Re-positional Ping
This application will traverse a known path to a distant node. Once at the destination node,
the application will attempt to ping the IP address given as an argument. The value in this
application comes from the ability to test connectivity from the point of view of another
XPLANE node. Such information is essential in diagnosing routing issues, firewall issues,
and in gaining insight to network flows.

4.6.1 Algorithm Description
The application starts by taking a unidirectional path as input. It then begins relocating
to nodes in the path. At each relocation, the application checks to see if the current node
ID matches the destination node ID. If it does not, the application relocates to the next
node in the path. If it does match, the application calls the ping function, which will use
XPLANE’s packet injection and capture mechanisms to test connectivity with the target
IP address. The application will return true to the originating node on a successful ping,
otherwise it will return false. The general algorithm is shown as Algorithm 6.
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Algorithm 6 Re-positional ping
1: procedure TRAVERSE(path) . path=list of nodes
2: if Head(path) = Node() then
3: Ping(ipAddr, i f ace) . ipAddr=IP to receive ping, iface=interface to send on
4: else
5: path← Tail(path) . Remove first element of path
6: On(Head(path),Traverse(path))
7: end if
8: end procedure
9: procedure PING(destIP,dev) . dev=network adapter on host to ping from

10: Send(dev,List(”EchoRequest”,destIP);
11: Pcap(dev,”icmp”,3,ProcPkts(pkts,destIP)))
12: end procedure
13: procedure PROCPKTS(pkts,source)
14: if pkts = null then
15: return f alse
16: else
17: pkt = Head(pkts) . grab next packet in the list of captured packets
18: if pkt.sourceIP = source then
19: return true
20: else
21: ProcPkts(Tail(pkts),source) . continue processing list of pkts
22: end if
23: end if
24: end procedure

4.6.2 Assumptions
Similar to Algorithm 5, a best effort attempt is given to reach the destination node. Any
network changes could affect the outcome of the application. The application will silently
terminate if the destination node cannot be reached via the provided path.

4.6.3 Additional Notes
This application is useful for testing connectivity between two distant nodes. The infor-
mation returned from this application could be extremely important in scenarios such as
troubleshooting firewall problems, access control list problems, or general connectivity is-
sues between two known IP addresses that should be able to communicate. The real value
in these scenarios is getting the network to perform actions that usually require physically
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re-locating an administrator. By automating the test from a distance, a network operator
need not rely on another person at the distant node.

4.7 Testing Platform for the Tactical Edge Suite
The approach used to test applications in the tactical edge suite is commonly referred to as
unit testing. In unit testing, code is executed on a specific input, in a specific environment,
and the output of that code is compared against expected results. In the case of the tactical
edge suite, the code was each individual application, and the environment was a series of
different networks, all configured in a way to specifically test that application. Special
attention was paid to edge cases in order to verify the behavior of applications.

4.7.1 CORE
To facilitate testing, the Common Open Research Emulator (CORE) virtualization platform
was used. CORE is a tool developed by Boeing Research and Technology and supported
by the Naval Research Laboratory (NRL) for emulating networks [16]. Networks built
in CORE are completely virtual; the network infrastructure and nodes all run as virtual
machines that emulate the nodes they represent. Figure 4.1 shows an example network
designed in CORE.

Each router, switch, and host can be configured to run different built-in protocols and ser-
vices, as seen in Figure 4.2. The interface is largely a drag-and-drop, Visio-style interface
that has a small learning curve for experienced network designers.

The CORE platform offers three important features for testing. The first feature is the
ability to communicate with the virtual networks. Networks built in CORE can be bridged

with real networks, allowing communication between physical and virtual nodes. This
allows application development to take place on a physical machine while still allowing
testing with a virtual network. The second feature is CORE’s ability to induce errors into
the network. Figure 4.3 shows CORE’s link configuration menu. CORE allows users
to artificially introduce problems such as latency, dropped packets, and duplicate packets
into network links. This feature is crucial for emulating the performance of XPLANE
applications in malfunctioning networks. The third feature is CORE’s built-in Topology

Generator, which allows users to rapidly generate a network of nodes from a menu-driven
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Figure 4.1: An example virtual network running in CORE

interface. Users can select from a number of common topologies to include star, grid,
cycle, and clique. CORE even has the option to generate random topologies. The CORE
Topology Generator was key to rapid testing in multiple topologies. CORE has built-in
Python scripting support, which allows for scripting of common tasks. CORE also comes
with a internal debugger, and various interfaces to modify the internals of CORE itself.
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Figure 4.2: CORE node configuration window

Figure 4.3: CORE link configuration menu
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CHAPTER 5:
Developing an XPLANE server and Web-based User

Interface

In order to keep the state of results from tactical edge suite applications, an XPLANE server
has been developed. The XPLANE server maintains state about a network and provides a
basic command line interface for injecting code into the XPLANE and capturing results.
A web-based UI has also been developed and interfaced with the XPLANE server, which
gives network operators a detailed view of the network topology.

5.1 XPLANE Server
In its current state, XPLANE consists of XPL and the runtime environment [7]. XPLANE
applications are launched via a command line program that accepts XPL-scheme and in-
jects the code into the local XPLANE node. Results of computations can be "seen" by
viewing the output from the XPLANE shim on the node where the application terminates.
On termination, the results are not stored in the XPLANE; it is up to the user to capture,
remember, and make sense of any information returned. This design is efficient for the
network and XPLANE runtime environment, but makes life harder for the end user.

Remembering and interpreting results are not the only usability issues for network opera-
tors. Applications from the tactical edge suite often expect certain parameters or arguments

to be defined, such as target node identifiers or IP addresses. Each time an application runs,
the code needs to be hand-modified with the correct arguments. If the code is expected to
return results from a distant part of the network, it also needs to be recompiled with the
CPS transformation [7]. This requires users to know how to edit XPL code and compile
programs with the CPS transformation. These barriers to usability have been overcome by
designing an XPLANE server.

The goal of the XPLANE server is to provide a layer of abstraction between the XPLANE
runtime system and the network operator. The server is responsible for launching appli-
cations from the tactical edge suite, capturing any results, and saving the overall network
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state. The main XPLANE server components are the command-line interface, a set of
classes representing the tactical edge suite, and an embedded web server. The XPLANE
server is written in the Java programming language and is therefore platform-agnostic. The
XPLANE server requires nothing more than the current Java Runtime Environment, which
is available on most modern platforms. All necessary support libraries are bundled with the
server itself.

5.1.1 Command-line Interface
The command-line interface allows users to run edge suite applications and view results,
display and modify network state, and push manual updates on network state via the web
server. Communication of network state to clients will be addressed in Section 5.1.3. Fig-
ure 5.1 shows a screen capture of the server’s command-line interface after both running an
application and printing out a summary of the network state. . The command-line interface
can be thought of as an XPLANE shell; it will infinitely loop, accepting commands and
displaying their output until the server is explicitly stopped by the user.

Figure 5.1: Screen capture of the XPLANE server’s command-line interface
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5.1.2 Edge Suite Classes
In order to integrate the tactical edge suite in to the server, each individual application is
"wrapped" inside a Java class. Each class consists of a string representation of the CPS
compiled XPL code, a constructor method, and a run() method. The XPL code has been
modified by removing all application-specific parameters and replacing them with Java
string format specifiers. The constructor is responsible for taking arguments passed via the
command line and formatting the XPL code string with the given arguments. The run()

method is where the work is done. When called, run() will inject the modified XPL code
into the local XPLANE shim. It will then begin capturing output from the XPLANE shim
and look for results from the injected application. However, there may be no results if the
network experiences a fault that prevents the application from completing execution.

Dealing with Incomplete Executions

When designing a Java wrapper class to an XPLANE application, an important design
decision is how to cope with partial executions due to network issues. One reason for partial
executions is the mechanism of relocation in XPLANE. Applications relocate via Ethernet
frames, and if a frame carrying an XPLANE application is dropped during transmission, the
computation will be lost. By design, the XPLANE does not "keep state" of computations in
the network; it is up to each individual computation to keep any necessary state. For these
reasons, a Java wrapper class needs to make a determination on how long it is willing to
wait to receive results from an XPLANE application. After this timeout the wrapper class
can either report application timeout or possibly re-run the XPLANE application. All of
these decisions can either be left to the wrapper class or the user can be queried for what to
do when these situations occur.

One of the most important functions of the run() method is receiving XPLANE applica-
tion results and parsing them accordingly. This operation often needs to be tailored for
the specific XPLANE application it is wrapping, which is why a generic container for
XPLANE applications cannot be used. Once the results have been received and parsed, the
run() method is responsible for updating the server’s internal network state. Once the run()

method returns, the XPLANE server may optionally push network status updates to any
connected web clients.
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5.1.3 Embedded Web Server
The XPLANE server comes with an embedded Hypertext Transfer Protocol (HTTP) server
known as Jetty. Jetty is an open source web server and Java Servlet container, that also
supports a number of other web technologies including WebSockets [17]. Jetty is written
in Java and maintained by the Eclipse Foundation. Jetty can run as a standalone web server
or be embedded within a larger application. In the case of the XPLANE server, Jetty is run
in embedded mode. When the XPLANE server is started, it launches an embedded Jetty
instance within itself to serve web content to clients. Jetty was chosen for use with the
XPLANE server due to it’s mature implementation of the WebSocket protocol.

WebSockets
The WebSocket protocol is a relatively new Internet Engineering Task Force (IETF) stan-
dard. The goal of the protocol is to provide browser-based applications a way to create a
persistent, full-duplex HTTP connection with a server [18]. The traditional client-server
model does not work well with applications that require sporadic updates from the server
to the client. These issues have been traditionally handled with workarounds such as ’long
polling’ in which the client continually polls the server for information updates [18]. With
WebSockets, clients can initiate the connection and simply wait for the server to push up-
dates vice constant polling from the client side.

Once the WebSocket connection is complete, the state of the network as determined using
the XPLANE is pushed to the newly connected client. This state information consists of
network nodes, edges between nodes, and metadata on nodes such as IP addresses, Ethernet
media access control (MAC) addresses, and node type. This data is formatted in JavaScript
Object Notation (JSON). Even though JSON is primarily used in JavaScript applications,
it is a language-independent data format and can be interpreted by many programming
languages. After the state of the network is initially pushed, the WebSocket connection
will persist until the client ends the connection. Any further network state updates will
automatically be pushed to all connected clients.

5.2 Web-based User Interface
In order to visualize the network state provided by the XPLANE server, a web browser-
based UI was created. Using a web browser as the interface was chosen due to the rich en-
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vironment of technologies that modern web browsers offer including JavaScript, WebSock-
ets, and Hypertext Markup Language Version 5 (HTML5). A web-based UI that focuses
on open standards such as these helps remove the need for platform-specific requirements.
This will allow the UI to run on most modern systems without modification.

5.2.1 Design Overview
At its core, the UI is a JavaScript application. When the UI connects and receives the ini-
tial network state, it parses the JSON data into internal array objects. It then feeds these
arrays to a library known as Data-Driven Documents (D3). D3 is a JavaScript library for
visualizing data sets using HTML5, Scalable Vector Graphics (SVG), and Cascading Style
Sheets (CSS) [19]. More specifically, D3 allows data to be transformed into graphical ob-
jects in the web broswer that can be interacted with and later modified via the Document
Object Model (DOM). For the purposes of this UI, the network state is rendered with D3
as a force-directed graph. Force-directed graphs turn networks of nodes into a physical
simulation by assigning certain properties such as charge, friction, and gravity to nodes.
It then allows these nodes to interact in such a way that the graph naturally finds an equi-
librium. At this equilibrium, the nodes will have largely separated and un-clustered from
each other, presenting a more readable graph. Figure 5.2 shows an example force-directed
graph generated from XPLANE server data. By using a force-directed layout, we escape
the issue of figuring out how to render the graph manually, which is a non-trivial problem
to solve.

5.2.2 Nodes and Graph Interaction
Nodes in the graph are represented by different graphics, depending on the node type spec-
ified in the JSON data. Routers display as the familiar router network icon, hosts display
as computer monitors, and nodes of type unknown display as questions marks. The graph
allows nodes to be rearranged using the mouse; all other nodes in the graph will respond to
changes in the force layout and react accordingly. This can be useful if the simulation failed
to find a suitable equilibrium. Nodes will respond to the mouse-over event by displaying a
pop-up menu. The pop-up menu will display all information available on a node. Figure
5.3 shows an example pop-up for a test network.
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Figure 5.2: An example force-directed graph generated from XPLANE server data

Figure 5.3: UI pop-up window on node mouse-over event

5.2.3 Server Updates
Once the UI has successfully downloaded, parsed, and rendered the JSON network data, the
WebSocket connection created with the XPLANE server will remain open. Any changes in
network state will automatically be pushed from the server to all connected clients. When
the UI receives an update, it will parse the new JSON data and compare the new data to
the old network data. New nodes and connections will be added to the graph, and deleted
nodes and connections will be removed. This method of updating the graph prevents D3
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from completely re-rendering the force-directed layout from scratch on every update, which
would make the graph unstable. Nodes and connections that persisted between updates will
stay relatively close to their original positions and will adjust only for new or deleted nodes.

5.2.4 Anomaly Detection
In addition to rendering the network visually, the UI will also attempt to detect anomalies
in the network. Anomaly detection occurs outside of the XPLANE by processing the raw
JSON network data in the UI and looking for known network anomalies. At this time,
the only anomaly successfully detected is duplicate IP addresses. Detected anomalies are
displayed in a table within the UI. Figure 5.4 shows a screen capture with two detected
network anomalies. Anomaly detection is run every time a network update is received, and
the detected anomalies table is updated accordingly.

Figure 5.4: Screen capture of detected anomalies table
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CHAPTER 6:
XPLANE Case Study

In order to compare the utility of the XPLANE toolset presented in Chapters 4 and 5 against
traditional tools, a case study was conducted. For this study, a battalion-sized tactical data
network was constructed in a laboratory setting. The case study is focused around the
scenario of troubleshooting a geographically dispersed network from a central location
much like the author’s experience in Afghanistan. First the network used for the case study
will be presented. Next an attempt to troubleshoot the network using traditional tools and
protocols will be presented. This will be followed by an attempt to troubleshoot the same
scenario using the XPLANE toolset presented in this thesis. Finally the results of both
troubleshooting attempts will be compared.

6.1 Network Layout
The network consists of four notional company positions: Alpha, Bravo, Charlie, and
Headquarters. Each company position consists of a router, a switch, and two worksta-
tions. The number of workstations was kept small for simplicity. The company positions
are connected through a number of means. Headquarters is directly connected to all three
companies. Alpha and Charlie company are notionally located in the same geographic area
and share a redundant link between each other. Bravo company is geographically isolated
from the other companies. All companies are notionally operating at a significant distance
from Headquarters company; travelling to other company positions for troubleshooting is
a last resort. Each company is responsible for a class C subnet. Static routing was utilized
due to the static nature of company positions. Figure 6.1 shows a diagram of the network
architecture.

Once the network was functioning correctly, errors were introduced at the logical layer to
emulate a malfunctioning tactical network. The errors introduced were common misconfig-
urations inspired from the author’s operational experience. The network has been logically
broken in three ways:

1. The routing table on Alpha company’s router has been accidentally deleted during a
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Figure 6.1: Network diagram for case study before errors are introduced

hypothetical troubleshooting session.
2. Bravo company’s router has an incorrect subnet mask specified for the link to Head-

quarters company.
3. Charlie company’s router has an incorrect (and duplicate) IP address on the interface

connected to Headquarters company.

A complete description of the network configuration and induced errors can be found in
Table B.1 in Appendix B. No virtualization was employed for the case study; all nodes are
physical. The tactical transmission systems that would connect company positions in a real
world scenario are notional. Ethernet cables were used to connect company positions in
the laboratory setting. For the purposes of troubleshooting we will assume that the notional
transmission systems have been verified as working correctly. Each router is a Linux-
based Soekris router. The XPLANE shim requires a Linux-based environment at this time,
which Soekris routers provide. The XPLANE shim is running on all four routers as well as
the troubleshooting workstation in the Headquarters subnet. The node identifiers for each
XPLANE node are displayed in Figure 6.1. The XPLANE shims have beaconing enabled.
All troubleshooting will take place from the XPL-enabled node within the Headquarters
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network (XPLANE node ID 151).

6.2 Troubleshooting with Traditional Tools
The first troubleshooting attempt was made with the tools and protocols described in Sec-
tion 2.3. For each tool, a description of the way it was employed as well as the results of
all tests performed will be explained.

6.2.1 Ping
The first step in network troubleshooting is to test logical layer connectivity between hosts.
In this case, the connectivity between Headquarters and all three companies is in question.
The first tool often employed for this test is the ping program or some version of it. For
this case study, we will utilize the program Nmap to automate a network-wide ping scan on
our behalf. Nmap will send a ping packet to every host in the specified networks and report
back any replies. Even though we have a good idea of which hosts to ping from the network
documentation, we will tell Nmap to scan the four class C subnets in use with the following
command: nmap -sP 10.0.1.0/24 10.0.2.0/24 10.0.3.0/24 10.0.4.0/24 10.0.10.0/24. Nmap
produced the following output:

Nmap scan report for 10.0.1.1

Host is up (0.00081s latency).

Nmap scan report for 10.0.1.51

Host is up (0.00028s latency).

Nmap scan report for 10.0.10.1

Host is up (0.00044s latency).

Nmap scan report for 10.0.10.5

Host is up (0.00098s latency).

Nmap scan report for 10.0.10.9

Host is up (0.0015s latency).

Nmap done: 1280 IP addresses (5 hosts up) scanned in 20.88 seconds

Looking closely at the live IP addresses we quickly notice that the only replies received
were from our own workstation and the interfaces on the Headquarters router. This adds
evidence to the possibility that logical layer connectivity is down with all three companies
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for some reason. It really only confirms that we cannot send ICMP traffic to the company
networks; it says nothing for other logical layer protocols. The next step would be to verify
all settings on the Headquarters router, which would produce no answers since it correctly
configured. In order to confirm that the issue affects the entire logical layer, we can use
Nmap again to perform a TCP-based ping. This will make Nmap attempt a TCP connection
to a specific port to see if any response is received at all. The following command was used:
nmap -PS22 10.0.2-4.1. This tells Nmap to send a TCP connection request to port 22 of
each company router and look for any reply. In our case, port 22 of the routers is running
secure shell (SSH) and therefore should reply. Nmap produced the following output:

Nmap done: 3 IP addresses (0 hosts up) scanned in 2.07 seconds

It is now clear that the logical layer is broken in some way. Unfortunately we have ex-
hausted the utility of connectivity testing tools such as ping and must move on.

6.2.2 Traceroute
Traceroute is used in troubleshooting to discover logical paths between two nodes. Tracer-
oute will show each hop along the path, and more importantly, the last successful hop. If
the last hop is not the target node, then we conclude that the source of the problem lies
somewhere close to the last successful hop along the path. In our case, traceroute will
be of little value. We have already shown that the logical layer is malfunctioning, which
traceroute relies on. On top of that, we are able to validate our own router’s configuration
which appears to be error-free. Regardless, it is never a bad idea to try all available tools.
Upon running traceroute on 10.0.2.1, 10.0.3.1, and 10.0.4.1, the tool confirmed the last hop
before failure is the Headquarters router. This at least confirms that traffic is making it from
our workstation to the Headquarters router. Beyond that, no other information is provided
for our troubleshooting efforts.

6.2.3 SNMP
SNMP can often be used in troubleshooting situations as long as network devices support
the protocol. In our case it makes no difference. SNMP is a UDP-based protocol that lives
at the logical layer of the network. Until we can fix the logical layer, tools that exist at this
layer will be of limited value.
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6.2.4 Link Layer Discovery Protocols
Protocols such as Link Layer Discovery Protocol (LLDP) cannot be applied to help diag-
nose problems in routed networks. Our case study network is segmented into different class
C subnets for each location. Link layer discovery protocols are limited to the local subnet
by definition. They cannot help in troubleshooting problems across subnet boundaries.

6.2.5 Results with Traditional Tools
We were able to gather evidence that there are logical layer connectivity issues to all three
companies. We are able to verify that the Headquarters’ router configuration is correct.
Combined with the previous assumption that transmission systems are working correctly,
we conclude that there are logical configuration issues on all three company routers. We
have no idea what the issues are and therefore need an experienced network operator to
troubleshoot each router configuration. If we do not have a seasoned network operator at
each location we would have to physically send one.

6.3 Troubleshooting with XPLANE
The second troubleshooting attempt was made with the tools presented in Chapters 4 and
5. As a reminder to the reader we are XPLANE node ID 151 and the XPLANE shim is
running on all routers. We begin by starting the XPLANE server and connecting the web-
based UI. At this point the only thing we know about in the XPLANE is ourselves. Figure
6.2 shows our current view of the network.

Figure 6.2: Initial view of the XPLANE during troubleshooting

6.3.1 Node Discovery with Depth-first Search
We start by attempting to discover nodes in the network using the depth-first search discov-
ery application discussed in Section 4.4. Figure 6.3 shows our view of the network after
depth-first search discovery.
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Figure 6.3: View of the XPLANE after node discovery

We discovered four additional nodes numbered one through four which aligns with our
network documentation. At this point we would like to query each node for information but
we do not know how each node is connected. We have an additional discovery application
in our toolbox that we can use.

6.3.2 Path Discovery with OnFlood Search
The discovery application described in Section 4.3 gives us both node and path information,
so we will use that next. Figure 6.4 shows the network view after path discovery.

Figure 6.4: View of the XPLANE after path discovery
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6.3.3 Router and Host Enumeration using XPLANE

The network topology now looks similar to what was expected. We continue by using the
application described in Section 4.5 to enumerate information from each node. Figure 6.5
shows the network after enumerating nodes one and two.

Figure 6.5: View of the XPLANE after enumerating first two nodes

The information pop-up shows all enumerated information for node two. Node two is
clearly Alpha company’s router. Now that we have some basic information on its live con-
figuration we can begin to troubleshoot. Comparing the live configuration to the network
documentation yields no discrepancies. Yet for some reason we still cannot communicate
with Alpha company which suggests the issue lies deeper. Unfortunately XPLANE does
not currently provide any additional information on Alpha’s router. We can however run
XPL applications on Alpha’s router, which is what we will do next. We will attempt to
discover the two hosts on Alpha’s subnet using the re-positional ping program described in
Section 4.6. The program will attempt to ping the IP addresses of the hosts from Alpha’s
router and report back the results. Figure 6.6 shows the results of our ping attempts.
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Figure 6.6: View of Alpha’s network after discovering hosts

We have discovered two additional nodes that have been assigned node identifiers 1000
and 1001. Since XPLANE is not running on edge devices, they have no XPLANE node
identifier. The XPLANE server makes up for this by generating a unique node identifier
for nodes that lie outside the XPLANE. The current numbering scheme starts at 1000 and
increases by one for each new node found. The number can be anything as long as it is

unique. The information pop-up shows all enumerated information for node 1000 which
really only consists of the host’s IP address. The identified information shows that these
are in fact the two hosts we expected to find in Alpha’s network. We will continue with
the same process for both Bravo and Charlie’s subnets. Figure 6.7 shows the graph view of
node four as well as the anomaly table after enumerating node four.

Once enumerated, it becomes clear that Charlie’s router has a wrong (and duplicate) IP ad-
dress on its connection with Headquarters. The anomaly was detected by the web-based UI
and pointed out in the anomaly table. Charlie’s connection to Headquarters should have an
IP address of 10.0.10.10; the last octet is incorrect. We next enumerate the hosts in Char-
lie’s subnet in the same manner as Alpha’s. Figure 6.8 shows the results of enumeration.
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Figure 6.7: View of XPLANE after enumerating Charlie’s router

Figure 6.8: View of Charlie’s network after dicovering hosts

We have successfully discovered the two hosts in Charlie’s subnet, which are now labeled
as nodes 1002 and 1003. As with the hosts in Alpha’s network, we will be unable to
enumerate anything besides the hosts’ IP address. We then turn to enumeration of Bravo’s
subnet. Figure 6.9 shows the result of enumerating Bravo’s router.

There are no new entries in the anomaly table. At this time the web-based UI can only
detect duplicate IP addresses, so we will need to look deeper to find problems with Bravo’s
router configuration.
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Figure 6.9: View of XPLANE after enumerating Bravo’s router

Upon inspection of the information provided by XPLANE, we notice an incorrect subnet
mask on Bravo’s connection to Headquarters. The subnet mask is 255.255.255.254 which is
incorrect. The last octet should be 252. This could explain the lack of logical connectivity
to Bravo company. We complete the enumeration by discovering the hosts in Bravo’s
subnet. Figure 6.10 shows the result of enumerating Bravo’s subnet and gives our final
view of the network as discovered by XPLANE-based tools.

6.4 Comparison of Troubleshooting Attempts
Troubleshooting with traditional tools in this case yielded little information. Troubleshoot-
ing with XPLANE-based tools yielded the entire network topology. Our XPLANE-based
tools also yielded the configuration of all network interfaces (with the exception of routing)
on XPL-enabled nodes. With the first attempt, we were able to rule out the Headquarters
router configuration as a source of the problem but were unable to go beyond that. Without
remote access to company routers we were unable to continue without relying on the phys-
ical presence of a trained network operator at each location. With the information provided
by the second troubleshooting attempt we were able to discover an incorrect and duplicate
IP address on Charlie’s router as well as an incorrect subnet mask on Bravo’s router. Fix-
ing these two issues remotely would fix the logical layer connection between Headquarters,
Charlie, and Bravo. We were unable to diagnose the connection problems with Alpha. We
could attempt to use the redundant link between Charlie and Alpha company once Charlie’s
connection to Headquarters is fixed, but we would still find that we can not connect. We
have reached the limit of what this application suite can achieve. How it might be extended
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with another application to diagnose Alpha’s connection problem is addressed in Section
7.2.1.

Figure 6.10: View of the entire network as discovered by XPLANE
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CHAPTER 7:
Future Work and Conclusions

The work presented in this thesis only begins to scratch the surface of what is possible with
an XPLANE-like system. Both XPLANE and the XPLANE-based tools developed in this
thesis could benefit from additional capabilities and work. We will first address XPLANE
and the future capabilities we would like to see. Next we will address the XPLANE-based
tools presented in Chapters 4 and 5 in the same manner. Finally we will present conclusions
to this research.

7.1 Future Work on XPLANE
XPLANE is an ongoing project. Development efforts have focused on the design of XPL
and ensuring the core capabilities of the system function correctly [7]. We will now address
capabilities that would increase the utility of XPLANE in tactical networks.

7.1.1 Security
The designers of XPLANE always considered security to be future work [7]. A security ar-
chitecture is driven by a threat model and without such a model, arguing a system is secure
amounts to secure by definition. Different threat models impose different sets of demands
on the system. We will define a threat model based on the types of networks discussed in
this thesis (i.e., tactical networks) and explore security concerns and mitigations.

Threat Model
The networks considered in this thesis are tactical networks in a field environment. The
most likely points of entry to the XPLANE in such networks would be through a device on
the local network, open switch ports, or the web-based UI to the XPLANE server. These
are the points of access we will consider for our threat model.

Consider a network that is XPLANE enabled but has no mechanism for access control to
XPLANE at the Ethernet frame level. Any host on the network could inject arbitrary XPL
code into the XPLANE. If the code is poorly written it could have unintended errors such
as failure to terminate. Consider the following program:
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Algorithm 7 A non-terminating program using OnFlood
1: procedure FOO

2: OnFlood(Foo())
3: end procedure
4: Foo()

Algorithm 7 is an example of a program that fails to terminate. The program additionally
uses OnFlood for relocation and as a side effect generates many copies of itself. The
combination of no terminating condition with flooding will cause this program to eventually
consume all available network bandwidth. This example illustrates the need for access
control to XPLANE at the frame layer of the network to protect against both naive users
and malicious insiders. Naive users can be considered anybody on the network who has the
capability to either accidentally inject code or purposefully inject untested code. Malicious
insiders can be considered anybody who wishes to use XPLANE in unintended ways such
as to disrupt network performance. Hence access control at the frame level is needed.

Access Control at the Frame Level
By implementing access control at the frame level we can restrict code injection to users
of the XPLANE server. XPLANE has experimental support for access control at the frame
level using message authentication codes (MACs). MACs are a cryptographic technique
used to authenticate messages between a sender and receiver [20]. MACs are typically
functions with two arguments that take the form:

MAC(K,m)

where K is a fixed size cryptographic key and m is the message to be authenticated. The
output of the MAC function is a fixed size value that is unique to the combination of K and
m. When the sender wishes to authenticate message m to the receiver, the sender will send
m as well as MAC(K,m). It is assumed that the sender and receiver have already agreed on
the secret key K through other means. Upon receipt of the message, the receiver calculates
MAC(K,m) and compares it to the MAC value sent with the message. If it matches, the
receiver concludes the message has not been tampered with. If it does not match, the
receiver discards the message. As long as an attacker does not know the secret key K, they
cannot change the contents of authenticated messages.
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The XPLANE currently has support for HMAC-SHA-1 [21]. HMAC is a keyed hash used
for message authentication. It can be used with any one of several cryptographic hash func-
tions. In the XPLANE, it is used with the Secure Hash Algorithm (SHA-1) hash function.
The HMAC-SHA-1 function takes as input a secret key K and a message m where m con-
sists of the XPLANE header and payload. When HMAC is enabled, XPLANE will attempt
to authenticate XPLANE packets before running the marshaled code contained within the
packet. If the packet does not authenticate, the XPLANE shim discards the packet.

This is a good start for access control at the frame level. The next piece would be protec-
tion from replay attacks. In a replay attack, the attacker takes advantage of the fact that
both the message and MAC can be eavesdropped, recorded, and later resent to the original
receiver of the message. The notion of unique message numbers is often used to prevent
replay attacks in protocols that use MACs for authentication [20]. Implementing a message
numbering system in XPLANE could prevent replay attacks.

It is worth noting again that MACs only provide authentication. MACs by themselves do
no provide any form of confidentiality. A malicious insider could eavesdrop on the results
of XPLANE applications and learn information about the network they were not intended
to have. In a different threat model this could be an issue.

Use of HMAC addresses the threat of unauthorized users injecting code into the XPLANE,
providing these users can be prevented from getting the HMAC key. If this can be guaran-
teed somehow then access to the XPLANE reduces to accessing it through the XPLANE
server. Therefore, steps must be taken to limit access to the XPLANE server to authorized
users only.

Access Control at the XPLANE Server
The mechanisms for access control at the XPLANE server level are aimed at limiting
user access. The XPLANE server should be augmented with user authentication mech-
anisms. Authentication could be integrated with pre-established user credentials such as
those stored on an existing Active Directory server. Users would authenticate via web
forms before gaining access to the live view of the network. Once authenticated, users
would be restricted to a set of verified applications such as the tactical edge suite. These
applications would be guaranteed to perform in a predictable manner and always terminate.
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Restricting users to a set of verified applications solves the problem of dealing with non-
terminating code; however, it could introduce a new problem. By centralizing control of
both XPLANE and the XPLANE server we have given up a key capability of XPLANE. We
are now relying on a logical layer protocol (i.e., HTTP) to communicate with the XPLANE
server and inject code into the XPLANE. Since XPLANE is meant to be used in situations
where the logical layer is malfunctioning, we run the risk of cutting off XPLANE access to
users that have no logical path to the XPLANE server. This is one reason that centralizing
the XPLANE server might not be the best solution. There are likely others. If the set of
applications available to users cannot be controlled then administrators need another option
for dealing with non-terminating code.

Time to Live Values
One possible mechanism is to limit the life of an XPLANE program in the network via
a TTL value. The idea of a TTL is not a new one. The IP protocol implements TTL
values as an integer that decrements at each hop. When the TTL reaches zero, the packet
is discarded. This prevents IP packets from traversing the network indefinitely [1]. The
same mechanism could be applied to XPLANE packets. Upon injection into the network,
the TTL of a program’s XPLANE packet would be initialized to a default value. With
each relocation in the network the TTL would be decremented until it reaches zero. Any
new copies of the program generated with constructs such as OnFlood would inherit the
current TTL value of the program. This ensures that programs cannot circumvent the TTL
simply by producing new copies of themselves. While this neatly takes care of the non-
termination problem, it introduces new complexities for XPL application writers. Consider
algorithm 3, which discovers network topology using OnFlood. In large networks, this
algorithm could possibly exhaust the TTL value of the program, forcing early termination.
In the program’s current form, the user would have no idea whether the program terminated
naturally or prematurely. This might leave parts of the network undiscovered if there is no
way to alert the user to early termination. One possible solution would be to expose the TTL
value of XPL programs to the program itself. This would allow XPL application writers to
query the TTL value before or after relocation. This information could be used to make a
determination on what to do when the program’s TTL begins to approach zero. Possible
actions would be to alert the user to the forced early termination, and possibly return partial
results of the computation. If the program returns results, it would additionally have to keep
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track of the number of hops that would be required to return back to the originating node,
as these hops will count against the TTL.

Key Management
HMAC cryptographic key management has many issues. They include generation, rollover
induced by network speed, expiration due to policy or compromise, and distribution. Stan-
dards such as the Federal Information Processing Standard (FIPS) 140-2 come into play,
and the generation, destruction, and accountability of keying material would likely fall un-
der the Electronic Key Management System (EKMS). These issues are beyond the scope
of this thesis.

7.1.2 Injection of TCP and UDP Packets
XPLANE currently only supports injection of ICMP packets. Adding support for both TCP
and UDP would allow for a broader range of measurements. XPLANE applications could
be written to troubleshoot specific ports and application layer protocols by mimicking their
behavior at the logical layer and observing network behavior.

7.1.3 Querying a Node’s Routing Tables
XPLANE has no built-in support to view a node’s routing tables. The case study presented
in Chapter 6 is a good example of a troubleshooting situation that could have benefited
from such support. The ability to query a distant node’s routing tables would open the door
to detecting anomalies in routing.

7.1.4 Querying a Node’s Management Information Base
If XPLANE is able to find a physical path to an XPLANE-enabled node it could attempt
to query the node’s MIB for relevant troubleshooting information. This information could
then be transported back to the originating node via the reverse path taken. Such informa-
tion could be useful during troubleshooting sessions where SNMP is running on nodes but
unavailable due to logical layer issues.

7.2 Future Work on XPLANE-based Tools
The tools presented in Chapters 4 and 5 are largely proofs of concept to demonstrate the
possibilities with XPLANE-based tools. There is plenty of room for improvement in all
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three major components.

7.2.1 Improving the Tactical Edge Suite
The tactical edge suite only consists of four applications at this time. These applications
are largely focused on network discovery. The suite is lacking in applications that make
better use of packet capture and injection to discover interesting things about the network.

One example of this would be enumerating all logical paths between a source and destina-
tion. This could be broken down into an application that attempts to discover all physical
paths between a source and destination and an application that tests a given physical path
for a corresponding logical path.

Chapter 6 demonstrated the need for applications that detect faulty paths. In the presented
case study, the troubleshooting workstation was unable to detect anomalies in Alpha Com-
pany’s router with the current tactical edge suite. An application to detect faulty reverse
paths could be made. In the case of Alpha’s router, the application would schedule a packet
capture on the interface to Headquarters (eth1) as well as the interface to Alpha’s subnet
(eth0). Next it would initiate an echo request from Headquarters to a workstation in Alpha’s
subnet. If an echo reply is seen at eth0 and not eth1, there is a faulty reverse path.

Another useful addition to the tactical edge suite would be an application that relocates
to routers and enumerates all hosts (including non XPLANE-enabled hosts) on a given
interface. This task is currently performed manually by the XPLANE server operator and
is unsuitable for enumeration of large subnets.

7.2.2 Improving the XPLANE Server
At this time the XPLANE server can only launch XPLANE applications from the
command-line interface. There is no support for launching applications on behalf of a
web-based client. Additionally the XPLANE server has been built around the concept of a
single user that runs applications in sequential manner. Adding support to take commands
from web-based clients will necessitate either an application queueing system or a way to
block requests from clients (as well as the command line) while an application is running.
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7.2.3 Improving the Web-based UI
The web-based UI has no support for launching XPLANE applications on the XPLANE
server. This support would require the UI to be aware of the applications available on the
XPLANE server as well as how to specify the necessary parameters to launch the applica-
tion. Ideally users would specify parameters using the graph by selecting elements in the
graph such as nodes and adjacencies.

Anomaly detection is currently performed within the UI. As XPLANE gains capabilities
(e.g., the ability to query routing tables) the UI will need to be augmented to discover
anomalies in the provided data. Anomalies are currently reported to the user via the
anomaly table within the UI. The anomaly table could be improved to provide additional
contextual information on each anomaly to ease in troubleshooting. For instance, clicking
on an entry in the anomaly table could highlight nodes in the graph that are involved with
the detected anomaly.

The UI is also lacking basic navigation features within the graph such as pan and zoom.
Such features will be necessary to navigate larger networks using the force-directed graph.

7.3 Conclusions
The problem of troubleshooting a geographically-dispersed network in a combat zone is
a hard one. Tactical networks will only get more complex from here and further exac-
erbate the issue. Units will always plan to have trained people in the right place at the
right time, but it rarely works that way. Even after our recent experiences in Iraq and
Afghanistan we have no good solution to this problem. The Marine Corps Center for
Lessons Learned (MCCLL) web site is host to recent after action reports from units that
cite the same communications issues experienced in this thesis. How do we cope with log-
ically broken data systems when no one can reach them? We simply do not have the tools
to answer this question. The Marine Corps and other services need new options.

This thesis scratched the surface of that problem and demonstrated there are options avail-
able through existing technology. The addition of new protocols and networking tech-
nologies (i.e., active networking) to tactical networks opens up new network management
possibilities. We can begin to rely on live network measurements instead of broken network
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documentation that may or may not reflect reality. We do not have to rely on a Marine’s
physical presence at the distant end in order to perform the most mundane of tasks. We can
query the network in ways not possible before. We can continue to grow these capabilities
if we begin to embrace open networking platforms that will allow for rapid adoption of
future networking technologies.

The problems discussed in this thesis are not exclusive to the fighting experienced in Iraq
and Afghanistan. These issues will exist in future Marine Corps networks. The landing
forces of Marine Expeditionary Units will experience these issues when they cannot com-
municate back to the command element due to a typo in a router. Mobile ad-hoc networks
will become unmanageable when the network operations center has no way to gain a live
view of the network. The networks of tomorrow will suffer from the problems of today if
we do not address our core networking shortfalls.
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APPENDIX A:
Code Listings

Listing A.1: Use OnFlood to find a node ID ’2’ in the XPLANE

1 (letrec (( findnode

2 (lambda (n path)

3 (if (equal? n node)

4 (cons node path)

5 (if (not (member node path))

6 (let ((n2 node))

7 (onflood (findnode n (cons n2 path)))))))))

8 (findnode 2 '()))

Listing A.2: Send an ’ping’ on interface 1 to 10.0.0.1 and look for reply

1 (letrecp ((p (lambda (pkts)

2 (if (null? pkts)

3 #f

4 (if (equal? "10.0.0.1" (ip.src (car pkts)))

5 #t

6 (p (cdr pkts)))))))

7 (send 1 '("EchoRequest" "10.0.0.1")

8 (pcap 1 "icmp" 3 p)))

Listing A.3: Discover all XPLANE nodes using OnFlood

1 (letrec ((f

2 (lambda (path)

3 (if (member node path)

4 path

5 (let ((n node))

6 (onflood (f (cons n path))))))))

7 (f '()))

Listing A.4: Discover all XPLANE nodes using depth-first search
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1 (letrec ((visit

2 (lambda (set)

3 (letrec (( neighbors

4 (lambda (list s1)

5 (if (null? list)

6 s1

7 (neighbors (cdr list) (on (car list) (visit s1)))))))

8 (letrec (( ifaces

9 (lambda (l s2)

10 (if (null? l)

11 s1

12 (ifaces (cdr l) (neighbors (node.direct (car l))

s2))))))

13 (if (member node set)

14 set

15 (ifaces (node.ifaces) (cons node set))))))))

16 (visit '()))

Listing A.5: Enumerate information on a remote node

1 ; the variable path_to_dest must be defined and be a valid

2 ; path to the destination node ID

3 (letrec (( enuminfo

4 (lambda (lst devs)

5 (if (null? devs)

6 lst

7 (let ((d (car devs)))

8 (enuminfo (append lst (list (list d (node.ip d)

(node.mask d) (node.ethaddr d) (node.direct d))))

(cdr devs)))))))

9 (letrec (( traverse

10 (lambda (path)

11 (if (and (equal? (car path) node) (null? (cdr path)))

12 (enuminfo (list node.type) (node.ifaces))

13 (let (( newpath (cdr path)))

14 (on (car newpath) (traverse newpath)))))))
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15 (traverse path_to_dest)))

Listing A.6: Re-positional Ping

1 ; the variables dest_ip , dest_interface , and path_to_dest

2 ; must be defined

3 (letrecp ((proc

4 (lambda (pkts src)

5 (if (null? pkts)

6 #f

7 (if (equal? src (ip.src (car pkts)))

8 #t

9 (proc (cdr pkts) src))))))

10 (letrec ((ping

11 (lambda (dest dev)

12 (send dev (list "EchoRequest" dest)

13 (pcap dev "icmp" 3 (lambda (p) (proc p dest)))))))

14 (letrec (( traverse

15 (lambda (path)

16 (if (and (equal? (car path) node) (null? (cdr

path)))

17 (ping dest_ip dest_interface)

18 (let (( newpath (cdr path)))

19 (on (car newpath) (traverse newpath)))))))

20 (traverse path_to_dest))))
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APPENDIX B:
Case Study Network Configuration

Location Type Interface - IP/Mask Routing Table

HQ Router

eth0 - 10.0.1.1/24
eth1 - 10.0.10.1/30
eth2 - 10.0.10.9/30
eth3 - 10.0.10.5/30

10.0.1.0/24 dev eth0
10.0.2.0/24 via 10.0.10.2 dev eth1
10.0.3.0/24 via 10.0.10.6 dev eth3
10.0.4.0/24 via 10.0.10.10 dev eth2

HQ Workstation eth0 - 10.0.1.50/24 default via 10.0.1.1 dev eth0
HQ Workstation eth0 - 10.0.1.51/24 default via 10.0.1.1 dev eth0

Alpha Router
eth0 - 10.0.2.1/24
eth1 - 10.0.10.2/30
eth2 - 10.0.10.13/30

10.0.2.0/24 dev eth0
10.0.1.0/24 via 10.0.10.1 dev eth11

10.0.3.0/24 via 10.0.10.1 dev eth1
10.0.4.0/24 via 10.0.10.14 dev eth2

Alpha Workstation eth0 - 10.0.2.50/24 default via 10.0.2.1 dev eth0
Alpha Workstation eth0 - 10.0.2.51/24 default via 10.0.2.1 dev eth0

Bravo Router
eth0 - 10.0.3.1/24
eth1 - 10.0.10.6/312

10.0.3.0/24 dev eth0
10.0.1.0/24 via 10.0.10.5 dev eth1
10.0.2.0/24 via 10.0.10.5 dev eth1
10.0.4.0/24 via 10.0.10.5 dev eth1

Bravo Workstation eth0 - 10.0.3.50/24 default via 10.0.3.1 dev eth0
Bravo Workstation eth0 - 10.0.3.51/24 default via 10.0.3.1 dev eth0

Charlie Router
eth0 - 10.0.4.1/24
eth1 - 10.0.10.9/303

eth2 - 10.0.10.14/30

10.0.4.0/24 dev eth0
10.0.1.0/24 via 10.0.10.9 dev eth1
10.0.2.0/24 via 10.0.10.13 dev eth2
10.0.3.0/24 via 10.0.10.9 dev eth1

Charlie Workstation eth0 - 10.0.4.50/24 default via 10.0.4.1 dev eth0
Charlie Workstation eth0 - 10.0.4.51/24 default via 10.0.4.1 dev eth0

Table B.1: Case study network configuration

1These required routing entries have been accidentally deleted on the router during troubleshooting.
2The subnet mask is incorrect. It should be /30.
3The IP address is incorrect. The last octet should be 10.
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